MEGF8 is a modifier of BMP signaling in trigeminal sensory neurons
نویسندگان
چکیده
Bone morphogenetic protein (BMP) signaling has emerged as an important regulator of sensory neuron development. Using a three-generation forward genetic screen in mice we have identified Megf8 as a novel modifier of BMP4 signaling in trigeminal ganglion (TG) neurons. Loss of Megf8 disrupts axon guidance in the peripheral nervous system and leads to defects in development of the limb, heart, and left-right patterning, defects that resemble those observed in Bmp4 loss-of-function mice. Bmp4 is expressed in a pattern that defines the permissive field for the peripheral projections of TG axons and mice lacking BMP signaling in sensory neurons exhibit TG axon defects that resemble those observed in Megf8 (-/-) embryos. Furthermore, TG axon growth is robustly inhibited by BMP4 and this inhibition is dependent on Megf8. Thus, our data suggest that Megf8 is involved in mediating BMP4 signaling and guidance of developing TG axons. DOI:http://dx.doi.org/10.7554/eLife.01160.001.
منابع مشابه
Retrograde BMP Signaling Regulates Trigeminal Sensory Neuron Identities and the Formation of Precise Face Maps
Somatosensory information from the face is transmitted to the brain by trigeminal sensory neurons. It was previously unknown whether neurons innervating distinct areas of the face possess molecular differences. We have identified a set of genes differentially expressed along the dorsoventral axis of the embryonic mouse trigeminal ganglion and thus can be considered trigeminal positional identit...
متن کاملA BMP-mediated transcriptional cascade involving Cash1 and Tlx-3 specifies first-order relay sensory neurons in the developing hindbrain
The divergent homeobox-containing transcription factor, Tlx-3 (also known as Hox11L2/Rnx), is required for proper formation of first-order relay sensory neurons in the developing vertebrate brainstem. To date, however, the inductive signals and transcriptional regulatory cascade underlying their development are poorly understood. We previously isolated the chick Tlx-3 homologue and showed it is...
متن کاملTarget-derived BMP signaling limits sensory neuron number and the extent of peripheral innervation in vivo.
The role of target-derived BMP signaling in development of sensory ganglia and the sensory innervation of the skin was examined in transgenic animals that overexpress either the BMP inhibitor noggin or BMP4 under the control of a keratin 14 (K14) promoter. Overexpression of noggin resulted in a significant increase in the number of neurons in the trigeminal and dorsal root ganglia. Conversely, ...
متن کاملRequirements for endoderm and BMP signaling in sensory neurogenesis in zebrafish.
Cranial sensory neurons largely derive from neurogenic placodes (epibranchial and dorsolateral), which are ectodermal thickenings that form the sensory ganglia associated with cranial nerves, but the molecular mechanisms of placodal development are unclear. Here, we show that the pharyngeal endoderm induces epibranchial neurogenesis in zebrafish, and that BMP signaling plays a crucial role in t...
متن کاملdlx3b and dlx4b function in the development of Rohon-Beard sensory neurons and trigeminal placode in the zebrafish neurula.
Rohon-Beard sensory neurons, neural crest cells, and sensory placodes can be distinguished at the boundary of the embryonic epidermis (skin) and the neural plate. The inductive signals at the neural plate border region are likely to involve a gradient of bone morphogenic protein (BMP) in conjunction with FGF and Wnts and other signals. However, how these signals are transduced to produce the fi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 2 شماره
صفحات -
تاریخ انتشار 2013